Data Cache
This topic describes the working principles of Data Cache and how to enable Data Cache to improve query performance on external data. From v3.3.0, Data Cache is enabled by default.
In data lake analytics, StarRocks works as an OLAP engine to scan data files stored in external storage systems, such as HDFS and Amazon S3. The I/O overhead increases as the number of files to scan increases. In addition, in some ad hoc scenarios, frequent access to the same data doubles I/O overhead.
To optimize the query performance in these scenarios, StarRocks 2.5 provides the Data Cache feature. This feature splits data in an external storage system into multiple blocks based on predefined policies and caches the data on StarRocks backends (BEs). This eliminates the need to pull data from external systems for each access request and accelerates queries and analysis on hot data. Data Cache only works when you query data from external storage systems by using external catalogs or external tables (excluding external tables for JDBC-compatible databases). It does not work when you query StarRocks native tables.
How it works
StarRocks splits data in an external storage system into multiple blocks of the same size (1 MB by default), and caches the data on BEs. Block is the smallest unit of data cache, which is configurable.
For example, if you set the block size to 1 MB and you want to query a Parquet file of 128 MB from Amazon S3, StarRocks splits the file into 128 blocks. The blocks are [0, 1 MB), [1 MB, 2 MB), [2 MB, 3 MB) ... [127 MB, 128 MB). StarRocks assigns a globally unique ID to each block, called a cache key. A cache key consists of the following three parts.
hash(filename) + fileModificationTime + blockId
The following table provides descriptions of each part.
Component item | Description |
---|---|
filename | The name of the data file. |
fileModificationTime | The last modification time of the data file. |
blockId | The ID that StarRocks assigns to a block when splitting the data file. The ID is unique under the same data file but is not unique within your StarRocks cluster. |
If the query hits the [1 MB, 2 MB) block, StarRocks performs the following operations:
- Check whether the block exists in the cache.
- If the block exists, StarRocks reads the block from the cache. If the block does not exist, StarRocks reads the block from Amazon S3 and caches it on a BE.
After Data Cache is enabled, StarRocks caches data blocks read from external storage systems.
Storage media of blocks
StarRocks uses the memory and disks of BE machines to cache blocks. It supports cache solely on memory or on both the memory and disks.
If you use disks as the storage media, the cache speed is directly affected by the performance of disks. Therefore, we recommend that you use high-performance disks such as NVMe disks for data cache. If you do not have high-performance disks, you can add more disks to relieve disk I/O pressure.
Cache replacement policies
StarRocks uses the least recently used (LRU) policy to cache and discard data.
- StarRocks first reads data from memory. If the data is not found in memory, StarRocks will read the data from disks and try to load the data read from disks into memory.
- Data discarded from memory will be written to disks. Data discarded from disks will be deleted.
Enable Data Cache
From v3.3.0, Data Cache is enabled by default.
By default, the system caches data in the following ways:
- The system variables
enable_scan_datacache
and the BE parameterdatacache_enable
are set totrue
by default. - If the cache disk path, memory size, and disk capacity are not configured, the system will automatically select a path and set memory and disk limits by following these rules:
- A datacache directory is created as the cache directory under
storage_root_path
. (You can modify this with the BE parameterdatacache_disk_path
.) - The system enables automatic disk space adjustment for Data Cache. It sets the limit to ensure that the overall disk usage is around 70%, and dynamically adjusts according to subsequent disk usage. (You can modify this behavior with the BE parameters
datacache_disk_high_level
,datacache_disk_safe_level
, anddatacache_disk_low_level
.) - The default memory limit for Data Cache is
0
. (You can modify this with the BE parameterdatacache_mem_size
.)
- A datacache directory is created as the cache directory under
- The system adopts asynchronous cache population by default to minimize its impact on data read operations.
- The I/O adaptor feature is enabled by default. When the disk I/O load is high, the system will automatically route some requests to remote storage to reduce disk pressure.
To disable Data Cache, execute the following statement:
SET GLOBAL enable_scan_datacache=false;
Populate data cache
Population rules
Since v3.3.2, in order to improve the cache hit rate of Data Cache, StarRocks populates Data Cache according to the following rules:
- The cache will not be populated for statements that are not
SELECT
, for example,ANALYZE TABLE
andINSERT INTO SELECT
. - Queries that scan all partitions of a table will not populate the cache. However, if the table has only one partition, population is performed by default.
- Queries that scan all columns of a table will not populate the cache. However, if the table has only one column, population is performed by default.
- The cache will not be populated for tables that are not Hive, Paimon, Delta Lake, Hudi, or Iceberg.
You can view the population behavior for a specific query with the EXPLAIN VERBOSE
command.
Example:
mysql> explain verbose select col1 from hudi_table;
| 0:HudiScanNode |
| TABLE: hudi_table |
| partitions=3/3 |
| cardinality=9084 |
| avgRowSize=2.0 |
| dataCacheOptions={populate: false} |
| cardinality: 9084 |
+-----------------------------------------+
dataCacheOptions={populate: false}
indicates that the cache will not be populated because the query will scan all partitions.
You can also fine tune the population behavior of Data Cache via the Session Variable populdate_datacache_mode.
Population mode
StarRocks supports populating Data Cache in synchronous or asynchronous mode.
-
Synchronous cache population
In synchronous population mode, all the remote data read by the current query is cached locally. Synchronous population is efficient but may affect the performance of initial queries because it happens during data reading.
-
Asynchronous cache population
In asynchronous population mode, the system tries to cache the accessed data in the background, in order to minimize the impact on read performance. Asynchronous population can reduce the performance impact of cache population on initial reads, but the population efficiency is lower than synchronous population. Typically, a single query cannot guarantee that all the accessed data can be cached. Multiple attempts may be needed to cache all the accessed data.
From v3.3.0, asynchronous cache population is enabled by default. You can change the population mode by setting the session variable enable_datacache_async_populate_mode.
Footer Cache
In addition to caching data from files in remote storage during queries against data lakes, StarRocks also supports caching the metadata (Footer) parsed from files. Footer Cache directly caches the parsed Footer object in memory. When the same file's Footer is accessed in subsequent queries, the object descriptor can be obtained directly from the cache, avoiding repetitive parsing.
Currently, StarRocks supports caching Parquet Footer objects.
You can enable Footer Cache by setting the following system variable:
SET GLOBAL enable_file_metacache=true;
NOTE
Footer Cache uses the memory module of the Data Cache for data caching. Therefore, you must ensure that the BE parameter
datacache_enable
is set totrue
and configure a reasonable value fordatacache_mem_size
.
I/O Adaptor
To prevent significant tail latency in disk access due to high cache disk I/O load, which can lead to negative optimization of the cache system, Data Cache provides the I/O adaptor feature. This feature routes some cache requests to remote storage when disk load is high, utilizing both local cache and remote storage to improve I/O throughput. This feature is enabled by default.
You can enable I/O Adaptor by setting the following system variable:
SET GLOBAL enable_datacache_io_adaptor=true;
Dynamic Scaling
Data Cache supports manual adjustment of cache capacity without restarting the BE process, and also supports automatic adjustment of cache capacity.
Manual Scaling
You can modify Data Cache's memory limit or disk capacity by dynamically adjusting BE configuration items.
Examples:
-- Adjust the Data Cache memory limit for a specific BE instance.
UPDATE be_configs SET VALUE="10G" WHERE NAME="datacache_mem_size" and BE_ID=10005;
-- Adjust the Data Cache memory ratio limit for all BE instances.
UPDATE be_configs SET VALUE="10%" WHERE NAME="datacache_mem_size";
-- Adjust the Data Cache disk limit for all BE instances.
UPDATE be_configs SET VALUE="2T" WHERE NAME="datacache_disk_size";
NOTE
- Be cautious when adjusting capacities in this way. Make sure not to omit the WHERE clause to avoid modifying irrelevant configuration items.
- Cache capacity adjustments made this way will not be persisted and will be lost after the BE process restarts. Therefore, you can first adjust the parameters dynamically as described above, and then manually modify the BE configuration file to ensure that the changes take effect after the next restart.
Automatic Scaling
StarRocks currently supports automatic scaling of disk capacity. If you do not specify the cache disk path and capacity limit in the BE configuration, automatic scaling is enabled by default.
You can also enable automatic scaling by adding the following configuration item to the BE configuration file and restarting the BE process:
datacache_auto_adjust_enable=true
After automatic scaling is enabled:
- When the disk usage exceeds the threshold specified by the BE parameter
datacache_disk_high_level
(default value is80
, that is, 80% of disk space), the system will automatically evict cache data to free up disk space. - When the disk usage is consistently below the threshold specified by the BE parameter
datacache_disk_low_level
(default value is60
, that is, 60% of disk space), and the current disk space used by Data Cache is full, the system will automatically expand the cache capacity. - When automatically scaling the cache capacity, the system will aim to adjust the cache capacity to the level specified by the BE parameter
datacache_disk_safe_level
(default value is70
, that is, 70% of disk space).
Check whether a query hits data cache
You can check whether a query hits data cache by analyzing the following metrics in the query profile:
DataCacheReadBytes
: the amount of data that StarRocks reads directly from its memory and disks.DataCacheWriteBytes
: the amount of data loaded from an external storage system to StarRocks' memory and disks.BytesRead
: the total amount of data that is read, including data that StarRocks reads from an external storage system, its memory, and disks.
Example 1: In this example, StarRocks reads a large amount of data (7.65 GB) from the external storage system and only a few data (518.73 MB) from the memory and disks. This means that few data caches were hit.
- Table: lineorder
- DataCacheReadBytes: 518.73 MB
- __MAX_OF_DataCacheReadBytes: 4.73 MB
- __MIN_OF_DataCacheReadBytes: 16.00 KB
- DataCacheReadCounter: 684
- __MAX_OF_DataCacheReadCounter: 4
- __MIN_OF_DataCacheReadCounter: 0
- DataCacheReadTimer: 737.357us
- DataCacheWriteBytes: 7.65 GB
- __MAX_OF_DataCacheWriteBytes: 64.39 MB
- __MIN_OF_DataCacheWriteBytes: 0.00
- DataCacheWriteCounter: 7.887K (7887)
- __MAX_OF_DataCacheWriteCounter: 65
- __MIN_OF_DataCacheWriteCounter: 0
- DataCacheWriteTimer: 23.467ms
- __MAX_OF_DataCacheWriteTimer: 62.280ms
- __MIN_OF_DataCacheWriteTimer: 0ns
- BufferUnplugCount: 15
- __MAX_OF_BufferUnplugCount: 2
- __MIN_OF_BufferUnplugCount: 0
- BytesRead: 7.65 GB
- __MAX_OF_BytesRead: 64.39 MB
- __MIN_OF_BytesRead: 0.00
Example 2: In this example, StarRocks reads a large amount of data (46.08 GB) from data cache and no data from the external storage system, which means StarRocks reads data only from data cache.
Table: lineitem
- DataCacheReadBytes: 46.08 GB
- __MAX_OF_DataCacheReadBytes: 194.99 MB
- __MIN_OF_DataCacheReadBytes: 81.25 MB
- DataCacheReadCounter: 72.237K (72237)
- __MAX_OF_DataCacheReadCounter: 299
- __MIN_OF_DataCacheReadCounter: 118
- DataCacheReadTimer: 856.481ms
- __MAX_OF_DataCacheReadTimer: 1s547ms
- __MIN_OF_DataCacheReadTimer: 261.824ms
- DataCacheWriteBytes: 0.00
- DataCacheWriteCounter: 0
- DataCacheWriteTimer: 0ns
- BufferUnplugCount: 1.231K (1231)
- __MAX_OF_BufferUnplugCount: 81
- __MIN_OF_BufferUnplugCount: 35
- BytesRead: 46.08 GB
- __MAX_OF_BytesRead: 194.99 MB
- __MIN_OF_BytesRead: 81.25 MB
Configurations and variables
You can configure Data Cache using the following system variables and BE parameters.
System variables
- populdate_datacache_mode
- enable_datacache_io_adaptor
- enable_file_metacache
- enable_datacache_async_populate_mode
BE Parameters
- datacache_enable
- datacache_disk_path
- datacache_meta_path
- datacache_mem_size
- datacache_disk_size
- datacache_auto_adjust_enable
- datacache_disk_high_level
- datacache_disk_safe_level
- datacache_disk_low_level
- datacache_disk_adjust_interval_seconds
- datacache_disk_idle_seconds_for_expansion
- datacache_min_disk_quota_for_adjustment