跳到主要内容
版本:Candidate-3.4

Hive catalog

Hive Catalog 是一种 External Catalog,自 2.3 版本开始支持。通过 Hive Catalog,您可以:

  • 无需手动建表,通过 Hive Catalog 直接查询 Hive 内的数据。
  • 通过 INSERT INTO 或异步物化视图(3.1 版本及以上)将 Hive 内的数据进行加工建模,并导入至 StarRocks。
  • 在 StarRocks 侧创建或删除 Hive 库表,或通过 INSERT INTO 把 StarRocks 表数据写入到 Parquet 格式(3.2 版本及以上)、以及 ORC 或 Textfile 格式(3.3 版本及以上)的 Hive 表中。

为保证正常访问 Hive 内的数据,StarRocks 集群必须能够访问 Hive 集群的存储系统和元数据服务。目前 StarRocks 支持以下存储系统和元数据服务:

  • 分布式文件系统 (HDFS) 或对象存储。当前支持的对象存储包括:AWS S3、Microsoft Azure Storage、Google GCS、其他兼容 S3 协议的对象存储(如阿里云 OSS、MinIO)。

  • 元数据服务。当前支持的元数据服务包括:Hive Metastore(以下简称 HMS)、AWS Glue。

    备注

    如果选择 AWS S3 作为存储系统,您可以选择 HMS 或 AWS Glue 作为元数据服务。如果选择其他存储系统,则只能选择 HMS 作为元数据服务。

使用说明

  • StarRocks 查询 Hive 内的数据时,支持 Parquet、ORC、Textfile、Avro、RCFile、SequenceFile 文件格式,其中:

    • Parquet 文件支持 SNAPPY、LZ4、ZSTD、GZIP 和 NO_COMPRESSION 压缩格式。自 v3.1.5 起,Parquet 文件还支持 LZO 压缩格式。
    • ORC 文件支持 ZLIB、SNAPPY、LZO、LZ4、ZSTD 和 NO_COMPRESSION 压缩格式。
    • Textfile 文件从 v3.1.5 起支持 LZO 压缩格式。
  • StarRocks 查询 Hive 内的数据时,不支持 INTERVAL、BINARY 和 UNION 三种数据类型。此外,对于 Textfile 格式的 Hive 表,StarRocks 不支持 MAP、STRUCT 数据类型。

  • StarRocks 写入数据到 Hive 时,支持 Parquet(3.2 版本及以上)、以及 ORC 或 Textfile(3.3 版本及以上)文件格式,其中:

    • Parquet 和 ORC 文件支持 NO_COMPRESSION、SNAPPY、LZ4、ZSTD 和 GZIP 压缩格式。
    • Textfile 文件支持 NO_COMPRESSION 压缩格式。

    您可以通过系统变量 connector_sink_compression_codec 来设置写入到 Hive 表时的压缩算法。

准备工作

在创建 Hive Catalog 之前,请确保 StarRocks 集群能够正常访问 Hive 的文件存储及元数据服务。

AWS IAM

如果 Hive 使用 AWS S3 作为文件存储或使用 AWS Glue 作为元数据服务,您需要选择一种合适的认证鉴权方案,确保 StarRocks 集群可以访问相关的 AWS 云资源。

您可以选择如下认证鉴权方案:

  • Instance Profile(推荐)
  • Assumed Role
  • IAM User

有关 StarRocks 访问 AWS 认证鉴权的详细内容,参见配置 AWS 认证方式 - 准备工作

HDFS

如果使用 HDFS 作为文件存储,则需要在 StarRocks 集群中做如下配置:

  • (可选)设置用于访问 HDFS 集群和 HMS 的用户名。 您可以在每个 FE 的 fe/conf/hadoop_env.sh 文件、以及每个 BE 的 be/conf/hadoop_env.sh 文件(或每个 CN 的 cn/conf/hadoop_env.sh 文件)最开头增加 export HADOOP_USER_NAME="<user_name>" 来设置该用户名。配置完成后,需重启各个 FE 和 BE(或 CN)使配置生效。如果不设置该用户名,则默认使用 FE 和 BE(或 CN)进程的用户名进行访问。每个 StarRocks 集群仅支持配置一个用户名。
  • 查询 Hive 数据时,StarRocks 集群的 FE 和 BE(或 CN)会通过 HDFS 客户端访问 HDFS 集群。一般情况下,StarRocks 会按照默认配置来启动 HDFS 客户端,无需手动配置。但在以下场景中,需要进行手动配置:
    • 如果 HDFS 集群开启了高可用(High Availability,简称为“HA”)模式,则需要将 HDFS 集群中的 hdfs-site.xml 文件放到每个 FE 的 $FE_HOME/conf 路径下、以及每个 BE 的 $BE_HOME/conf 路径(或每个 CN 的 $CN_HOME/conf 路径)下。
    • 如果 HDFS 集群配置了 ViewFs,则需要将 HDFS 集群中的 core-site.xml 文件放到每个 FE 的 $FE_HOME/conf 路径下、以及每个 BE 的 $BE_HOME/conf 路径(或每个 CN 的 $CN_HOME/conf 路径)下。
备注

如果查询时因为域名无法识别 (Unknown Host) 而发生访问失败,您需要将 HDFS 集群中各节点的主机名及 IP 地址之间的映射关系配置到 /etc/hosts 路径中。

Kerberos 认证

如果 HDFS 集群或 HMS 开启了 Kerberos 认证,则需要在 StarRocks 集群中做如下配置:

  • 在每个 FE 和 每个 BE(或 CN)上执行 kinit -kt keytab_path principal 命令,从 Key Distribution Center (KDC) 获取到 Ticket Granting Ticket (TGT)。执行命令的用户必须拥有访问 HMS 和 HDFS 的权限。注意,使用该命令访问 KDC 具有时效性,因此需要使用 cron 定期执行该命令。
  • 在每个 FE 的 $FE_HOME/conf/fe.conf 文件和每个 BE 的 $BE_HOME/conf/be.conf 文件(或每个 CN 的 $CN_HOME/conf/cn.conf 文件)中添加 JAVA_OPTS="-Djava.security.krb5.conf=/etc/krb5.conf"。其中,/etc/krb5.confkrb5.conf 文件的路径,可以根据文件的实际路径进行修改。

创建 Hive Catalog

语法

CREATE EXTERNAL CATALOG <catalog_name>
[COMMENT <comment>]
PROPERTIES
(
"type" = "hive",
GeneralParams,
MetastoreParams,
StorageCredentialParams,
MetadataUpdateParams
)

参数说明

catalog_name

Hive Catalog 的名称。命名要求如下:

  • 必须由字母 (a-z 或 A-Z)、数字 (0-9) 或下划线 (_) 组成,且只能以字母开头。
  • 总长度不能超过 1023 个字符。
  • Catalog 名称大小写敏感。

comment

Hive Catalog 的描述。此参数为可选。

type

数据源的类型。设置为 hive

GeneralParams

指定通用设置的一组参数。

GeneralParams 包含如下参数。

参数是否必须说明
enable_recursive_listing指定 StarRocks 是否递归读取表或者分区目录(包括子目录)中文件的数据。取值范围:truefalse。默认值:true。取值为 true 表示递归遍历,取值为 false 表示只读取表或者分区目录当前层级中文件的数据。

MetastoreParams

StarRocks 访问 Hive 集群元数据服务的相关参数配置。

Hive metastore

如果选择 HMS 作为 Hive 集群的元数据服务,请按如下配置 MetastoreParams

"hive.metastore.type" = "hive",
"hive.metastore.uris" = "<hive_metastore_uri>"
备注

在查询 Hive 数据之前,必须将所有 HMS 节点的主机名及 IP 地址之间的映射关系添加到 /etc/hosts 路径。否则,发起查询时,StarRocks 可能无法访问 HMS。

MetastoreParams 包含如下参数。

参数是否必须说明
hive.metastore.typeHive 集群所使用的元数据服务的类型。设置为 hive
hive.metastore.urisHMS 的 URI。格式:thrift://<HMS IP 地址>:<HMS 端口号>
如果您的 HMS 开启了高可用模式,此处可以填写多个 HMS 地址并用逗号分隔,例如:"thrift://<HMS IP 地址 1>:<HMS 端口号 1>,thrift://<HMS IP 地址 2>:<HMS 端口号 2>,thrift://<HMS IP 地址 3>:<HMS 端口号 3>"
AWS Glue

如果选择 AWS Glue 作为 Hive 集群的元数据服务(只有使用 AWS S3 作为存储系统时支持),请按如下配置 MetastoreParams

  • 基于 Instance Profile 进行认证和鉴权

    "hive.metastore.type" = "glue",
    "aws.glue.use_instance_profile" = "true",
    "aws.glue.region" = "<aws_glue_region>"
  • 基于 Assumed Role 进行认证和鉴权

    "hive.metastore.type" = "glue",
    "aws.glue.use_instance_profile" = "true",
    "aws.glue.iam_role_arn" = "<iam_role_arn>",
    "aws.glue.region" = "<aws_glue_region>"
  • 基于 IAM User 进行认证和鉴权

    "hive.metastore.type" = "glue",
    "aws.glue.use_instance_profile" = "false",
    "aws.glue.access_key" = "<iam_user_access_key>",
    "aws.glue.secret_key" = "<iam_user_secret_key>",
    "aws.glue.region" = "<aws_s3_region>"

MetastoreParams 包含如下参数。

参数是否必须说明
hive.metastore.typeHive 集群所使用的元数据服务的类型。设置为 glue
aws.glue.use_instance_profile指定是否开启 Instance Profile 和 Assumed Role 两种鉴权方式。取值范围:truefalse。默认值:false
aws.glue.iam_role_arn有权限访问 AWS Glue Data Catalog 的 IAM Role 的 ARN。采用 Assumed Role 鉴权方式访问 AWS Glue 时,必须指定此参数。
aws.glue.regionAWS Glue Data Catalog 所在的地域。示例:us-west-1
aws.glue.access_keyIAM User 的 Access Key。采用 IAM User 鉴权方式访问 AWS Glue 时,必须指定此参数。
aws.glue.secret_keyIAM User 的 Secret Key。采用 IAM User 鉴权方式访问 AWS Glue 时,必须指定此参数。

有关如何选择用于访问 AWS Glue 的鉴权方式、以及如何在 AWS IAM 控制台配置访问控制策略,参见访问 AWS Glue 的认证参数

StorageCredentialParams

StarRocks 访问 Hive 集群文件存储的相关参数配置。

如果您使用 HDFS 作为存储系统,则不需要配置 StorageCredentialParams

如果您使用 AWS S3、其他兼容 S3 协议的对象存储、Microsoft Azure Storage、 或 GCS,则必须配置 StorageCredentialParams

AWS S3

如果选择 AWS S3 作为 Hive 集群的文件存储,请按如下配置 StorageCredentialParams

  • 基于 Instance Profile 进行认证和鉴权

    "aws.s3.use_instance_profile" = "true",
    "aws.s3.region" = "<aws_s3_region>"
  • 基于 Assumed Role 进行认证和鉴权

    "aws.s3.use_instance_profile" = "true",
    "aws.s3.iam_role_arn" = "<iam_role_arn>",
    "aws.s3.region" = "<aws_s3_region>"
  • 基于 IAM User 进行认证和鉴权

    "aws.s3.use_instance_profile" = "false",
    "aws.s3.access_key" = "<iam_user_access_key>",
    "aws.s3.secret_key" = "<iam_user_secret_key>",
    "aws.s3.region" = "<aws_s3_region>"

StorageCredentialParams 包含如下参数。

参数是否必须说明
aws.s3.use_instance_profile指定是否开启 Instance Profile 和 Assumed Role 两种鉴权方式。取值范围:truefalse。默认值:false
aws.s3.iam_role_arn有权限访问 AWS S3 Bucket 的 IAM Role 的 ARN。采用 Assumed Role 鉴权方式访问 AWS S3 时,必须指定此参数。
aws.s3.regionAWS S3 Bucket 所在的地域。示例:us-west-1
aws.s3.access_keyIAM User 的 Access Key。采用 IAM User 鉴权方式访问 AWS S3 时,必须指定此参数。
aws.s3.secret_keyIAM User 的 Secret Key。采用 IAM User 鉴权方式访问 AWS S3 时,必须指定此参数。

有关如何选择用于访问 AWS S3 的鉴权方式、以及如何在 AWS IAM 控制台配置访问控制策略,参见访问 AWS S3 的认证参数

阿里云 OSS

如果选择阿里云 OSS 作为 Hive 集群的文件存储,需要在 StorageCredentialParams 中配置如下认证参数:

"aliyun.oss.access_key" = "<user_access_key>",
"aliyun.oss.secret_key" = "<user_secret_key>",
"aliyun.oss.endpoint" = "<oss_endpoint>"
参数是否必须说明
aliyun.oss.endpoint阿里云 OSS Endpoint, 如 oss-cn-beijing.aliyuncs.com,您可根据 Endpoint 与地域的对应关系进行查找,请参见 访问域名和数据中心
aliyun.oss.access_key指定阿里云账号或 RAM 用户的 AccessKey ID,获取方式,请参见 获取 AccessKey
aliyun.oss.secret_key指定阿里云账号或 RAM 用户的 AccessKey Secret,获取方式,请参见 获取 AccessKey
兼容 S3 协议的对象存储

Hive Catalog 从 2.5 版本起支持兼容 S3 协议的对象存储。

如果选择兼容 S3 协议的对象存储(如 MinIO)作为 Hive 集群的文件存储,请按如下配置 StorageCredentialParams

"aws.s3.enable_ssl" = "false",
"aws.s3.enable_path_style_access" = "true",
"aws.s3.endpoint" = "<s3_endpoint>",
"aws.s3.access_key" = "<iam_user_access_key>",
"aws.s3.secret_key" = "<iam_user_secret_key>"

StorageCredentialParams 包含如下参数。

参数是否必须说明
aws.s3.enable_sslYes是否开启 SSL 连接。
取值范围:truefalse。默认值:true
aws.s3.enable_path_style_accessYes是否开启路径类型访问 (Path-Style Access)。
取值范围:truefalse。默认值:false。对于 MinIO,必须设置为 true
路径类型 URL 使用如下格式:https://s3.<region_code>.amazonaws.com/<bucket_name>/<key_name>。例如,如果您在美国西部(俄勒冈)区域中创建一个名为 DOC-EXAMPLE-BUCKET1 的存储桶,并希望访问该存储桶中的 alice.jpg 对象,则可使用以下路径类型 URL:https://s3.us-west-2.amazonaws.com/DOC-EXAMPLE-BUCKET1/alice.jpg
aws.s3.endpointYes用于访问兼容 S3 协议的对象存储的 Endpoint。
aws.s3.access_keyYesIAM User 的 Access Key。
aws.s3.secret_keyYesIAM User 的 Secret Key。
Microsoft Azure Storage

Hive Catalog 从 3.0 版本起支持 Microsoft Azure Storage。

Azure Blob Storage

如果选择 Blob Storage 作为 Hive 集群的文件存储,请按如下配置 StorageCredentialParams

  • 基于 Shared Key 进行认证和鉴权

    "azure.blob.storage_account" = "<storage_account_name>",
    "azure.blob.shared_key" = "<storage_account_shared_key>"

    StorageCredentialParams 包含如下参数。

    参数是否必须说明
    azure.blob.storage_accountBlob Storage 账号的用户名。
    azure.blob.shared_keyBlob Storage 账号的 Shared Key。
  • 基于 SAS Token 进行认证和鉴权

    "azure.blob.storage_account" = "<storage_account_name>",
    "azure.blob.container" = "<container_name>",
    "azure.blob.sas_token" = "<storage_account_SAS_token>"

    StorageCredentialParams 包含如下参数。

    参数是否必须说明
    azure.blob.storage_accountBlob Storage 账号的用户名。
    azure.blob.container数据所在 Blob 容器的名称。
    azure.blob.sas_token用于访问 Blob Storage 账号的 SAS Token。
Azure Data Lake Storage Gen2

如果选择 Data Lake Storage Gen2 作为 Hive 集群的文件存储,请按如下配置 StorageCredentialParams

  • 基于 Managed Identity 进行认证和鉴权

    "azure.adls2.oauth2_use_managed_identity" = "true",
    "azure.adls2.oauth2_tenant_id" = "<service_principal_tenant_id>",
    "azure.adls2.oauth2_client_id" = "<service_client_id>"

    StorageCredentialParams 包含如下参数。

    参数是否必须说明
    azure.adls2.oauth2_use_managed_identity指定是否开启 Managed Identity 鉴权方式。设置为 true
    azure.adls2.oauth2_tenant_id数据所属 Tenant 的 ID。
    azure.adls2.oauth2_client_idManaged Identity 的 Client (Application) ID。
  • 基于 Shared Key 进行认证和鉴权

    "azure.adls2.storage_account" = "<storage_account_name>",
    "azure.adls2.shared_key" = "<storage_account_shared_key>"

    StorageCredentialParams 包含如下参数。

    参数是否必须说明
    azure.adls2.storage_accountData Lake Storage Gen2 账号的用户名。
    azure.adls2.shared_keyData Lake Storage Gen2 账号的 Shared Key。
  • 基于 Service Principal 进行认证和鉴权

    "azure.adls2.oauth2_client_id" = "<service_client_id>",
    "azure.adls2.oauth2_client_secret" = "<service_principal_client_secret>",
    "azure.adls2.oauth2_client_endpoint" = "<service_principal_client_endpoint>"

    StorageCredentialParams 包含如下参数。

    参数是否必须说明
    azure.adls2.oauth2_client_idService Principal 的 Client (Application) ID。
    azure.adls2.oauth2_client_secret新建的 Client (Application) Secret。
    azure.adls2.oauth2_client_endpointService Principal 或 Application 的 OAuth 2.0 Token Endpoint (v1)。
Azure Data Lake Storage Gen1

如果选择 Data Lake Storage Gen1 作为 Hive 集群的文件存储,请按如下配置 StorageCredentialParams

  • 基于 Managed Service Identity 进行认证和鉴权

    "azure.adls1.use_managed_service_identity" = "true"

    StorageCredentialParams 包含如下参数。

    参数是否必须说明
    azure.adls1.use_managed_service_identity指定是否开启 Managed Service Identity 鉴权方式。设置为 true
  • 基于 Service Principal 进行认证和鉴权

    "azure.adls1.oauth2_client_id" = "<application_client_id>",
    "azure.adls1.oauth2_credential" = "<application_client_credential>",
    "azure.adls1.oauth2_endpoint" = "<OAuth_2.0_authorization_endpoint_v2>"

    StorageCredentialParams 包含如下参数。

    ParameterRequiredDescription
    azure.adls1.oauth2_client_idService Principal 的 Client (Application) ID。
    azure.adls1.oauth2_credential新建的 Client (Application) Secret。
    azure.adls1.oauth2_endpointService Principal 或 Application 的 OAuth 2.0 Token Endpoint (v1)。
Google GCS

Hive Catalog 从 3.0 版本起支持 Google GCS。

如果选择 Google GCS 作为 Hive 集群的文件存储,请按如下配置 StorageCredentialParams

  • 基于 VM 进行认证和鉴权

    "gcp.gcs.use_compute_engine_service_account" = "true"

    StorageCredentialParams 包含如下参数。

    参数默认值取值样例说明
    gcp.gcs.use_compute_engine_service_accountfalsetrue是否直接使用 Compute Engine 上面绑定的 Service Account。
  • 基于 Service Account 进行认证和鉴权

    "gcp.gcs.service_account_email" = "<google_service_account_email>",
    "gcp.gcs.service_account_private_key_id" = "<google_service_private_key_id>",
    "gcp.gcs.service_account_private_key" = "<google_service_private_key>"

    StorageCredentialParams 包含如下参数。

    参数默认值取值样例说明
    gcp.gcs.service_account_email"""user@hello.iam.gserviceaccount.com"创建 Service Account 时生成的 JSON 文件中的 Email。
    gcp.gcs.service_account_private_key_id"""61d257bd8479547cb3e04f0b9b6b9ca07af3b7ea"创建 Service Account 时生成的 JSON 文件中的 Private Key ID。
    gcp.gcs.service_account_private_key"""-----BEGIN PRIVATE KEY----xxxx-----END PRIVATE KEY-----\n"创建 Service Account 时生成的 JSON 文件中的 Private Key。
  • 基于 Impersonation 进行认证和鉴权

    • 使用 VM 实例模拟 Service Account

      "gcp.gcs.use_compute_engine_service_account" = "true",
      "gcp.gcs.impersonation_service_account" = "<assumed_google_service_account_email>"

      StorageCredentialParams 包含如下参数。

      参数默认值取值样例说明
      gcp.gcs.use_compute_engine_service_accountfalsetrue是否直接使用 Compute Engine 上面绑定的 Service Account。
      gcp.gcs.impersonation_service_account"""hello"需要模拟的目标 Service Account。
    • 使用一个 Service Account(暂时命名为“Meta Service Account”)模拟另一个 Service Account(暂时命名为“Data Service Account”)

      "gcp.gcs.service_account_email" = "<google_service_account_email>",
      "gcp.gcs.service_account_private_key_id" = "<meta_google_service_account_email>",
      "gcp.gcs.service_account_private_key" = "<meta_google_service_account_email>",
      "gcp.gcs.impersonation_service_account" = "<data_google_service_account_email>"

      StorageCredentialParams 包含如下参数。

      参数默认值取值样例说明
      gcp.gcs.service_account_email"""user@hello.iam.gserviceaccount.com"创建 Meta Service Account 时生成的 JSON 文件中的 Email。
      gcp.gcs.service_account_private_key_id"""61d257bd8479547cb3e04f0b9b6b9ca07af3b7ea"创建 Meta Service Account 时生成的 JSON 文件中的 Private Key ID。
      gcp.gcs.service_account_private_key"""-----BEGIN PRIVATE KEY----xxxx-----END PRIVATE KEY-----\n"创建 Meta Service Account 时生成的 JSON 文件中的 Private Key。
      gcp.gcs.impersonation_service_account"""hello"需要模拟的目标 Data Service Account。

MetadataUpdateParams

指定缓存元数据更新策略的一组参数。StarRocks 根据该策略更新缓存的 Hive 元数据。此组参数为可选。

StarRocks 默认采用自动异步更新策略,开箱即用。因此,一般情况下,您可以忽略 MetadataUpdateParams,无需对其中的策略参数进行调优。

如果 Hive 数据更新频率较高,那么您可以对这些参数进行调优,从而优化自动异步更新策略的性能。

参数是否必须说明
enable_metastore_cache指定 StarRocks 是否缓存 Hive 表的元数据。取值范围:truefalse。默认值:true。取值为 true 表示开启缓存,取值为 false 表示关闭缓存。
enable_remote_file_cache指定 StarRocks 是否缓存 Hive 表或分区的数据文件的元数据。取值范围:truefalse。默认值:true。取值为 true 表示开启缓存,取值为 false 表示关闭缓存。
metastore_cache_refresh_interval_secStarRocks 异步更新缓存的 Hive 表或分区的元数据的时间间隔。单位:秒。默认值:60,即一分钟。自 v3.3.0 起,该属性默认值由 7200 变更为 60
remote_file_cache_refresh_interval_secStarRocks 异步更新缓存的 Hive 表或分区的数据文件的元数据的时间间隔。单位:秒。默认值:60
metastore_cache_ttl_secStarRocks 自动淘汰缓存的 Hive 表或分区的元数据的时间间隔。单位:秒。默认值:86400,即 24 小时。
remote_file_cache_ttl_secStarRocks 自动淘汰缓存的 Hive 表或分区的数据文件的元数据的时间间隔。单位:秒。默认值:129600,即 36 小时。
enable_cache_list_names指定 StarRocks 是否缓存 Hive Partition Names。取值范围:truefalse。默认值:true。取值为 true 表示开启缓存,取值为 false 表示关闭缓存。

示例

以下示例创建了一个名为 hive_catalog_hmshive_catalog_glue 的 Hive Catalog,用于查询 Hive 集群里的数据。

HDFS

使用 HDFS 作为存储时,可以按如下创建 Hive Catalog:

CREATE EXTERNAL CATALOG hive_catalog_hms
PROPERTIES
(
"type" = "hive",
"hive.metastore.type" = "hive",
"hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083"
);

AWS S3

如果基于 Instance Profile 进行鉴权和认证
  • 如果 Hive 集群使用 HMS 作为元数据服务,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "aws.s3.use_instance_profile" = "true",
    "aws.s3.region" = "us-west-2"
    );
  • 如果 Amazon EMR Hive 集群使用 AWS Glue 作为元数据服务,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_glue
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "glue",
    "aws.glue.use_instance_profile" = "true",
    "aws.glue.region" = "us-west-2",
    "aws.s3.use_instance_profile" = "true",
    "aws.s3.region" = "us-west-2"
    );
如果基于 Assumed Role 进行鉴权和认证
  • 如果 Hive 集群使用 HMS 作为元数据服务,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "aws.s3.use_instance_profile" = "true",
    "aws.s3.iam_role_arn" = "arn:aws:iam::081976408565:role/test_s3_role",
    "aws.s3.region" = "us-west-2"
    );
  • 如果 Amazon EMR Hive 集群使用 AWS Glue 作为元数据服务,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_glue
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "glue",
    "aws.glue.use_instance_profile" = "true",
    "aws.glue.iam_role_arn" = "arn:aws:iam::081976408565:role/test_glue_role",
    "aws.glue.region" = "us-west-2",
    "aws.s3.use_instance_profile" = "true",
    "aws.s3.iam_role_arn" = "arn:aws:iam::081976408565:role/test_s3_role",
    "aws.s3.region" = "us-west-2"
    );
如果基于 IAM User 进行鉴权和认证
  • 如果 Hive 集群使用 HMS 作为元数据服务,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "aws.s3.use_instance_profile" = "false",
    "aws.s3.access_key" = "<iam_user_access_key>",
    "aws.s3.secret_key" = "<iam_user_access_key>",
    "aws.s3.region" = "us-west-2"
    );
  • 如果 Amazon EMR Hive 集群使用 AWS Glue 作为元数据服务,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_glue
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "glue",
    "aws.glue.use_instance_profile" = "false",
    "aws.glue.access_key" = "<iam_user_access_key>",
    "aws.glue.secret_key" = "<iam_user_secret_key>",
    "aws.glue.region" = "us-west-2",
    "aws.s3.use_instance_profile" = "false",
    "aws.s3.access_key" = "<iam_user_access_key>",
    "aws.s3.secret_key" = "<iam_user_secret_key>",
    "aws.s3.region" = "us-west-2"
    );

兼容 S3 协议的对象存储

以 MinIO 为例,可以按如下创建 Hive Catalog:

CREATE EXTERNAL CATALOG hive_catalog_hms
PROPERTIES
(
"type" = "hive",
"hive.metastore.type" = "hive",
"hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
"aws.s3.enable_ssl" = "true",
"aws.s3.enable_path_style_access" = "true",
"aws.s3.endpoint" = "<s3_endpoint>",
"aws.s3.access_key" = "<iam_user_access_key>",
"aws.s3.secret_key" = "<iam_user_secret_key>"
);

Microsoft Azure Storage

Azure Blob Storage
  • 如果基于 Shared Key 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "azure.blob.storage_account" = "<blob_storage_account_name>",
    "azure.blob.shared_key" = "<blob_storage_account_shared_key>"
    );
  • 如果基于 SAS Token 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "azure.blob.storage_account" = "<blob_storage_account_name>",
    "azure.blob.container" = "<blob_container_name>",
    "azure.blob.sas_token" = "<blob_storage_account_SAS_token>"
    );
Azure Data Lake Storage Gen1
  • 如果基于 Managed Service Identity 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "azure.adls1.use_managed_service_identity" = "true"
    );
  • 如果基于 Service Principal 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "azure.adls1.oauth2_client_id" = "<application_client_id>",
    "azure.adls1.oauth2_credential" = "<application_client_credential>",
    "azure.adls1.oauth2_endpoint" = "<OAuth_2.0_authorization_endpoint_v2>"
    );
Azure Data Lake Storage Gen2
  • 如果基于 Managed Identity 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "azure.adls2.oauth2_use_managed_identity" = "true",
    "azure.adls2.oauth2_tenant_id" = "<service_principal_tenant_id>",
    "azure.adls2.oauth2_client_id" = "<service_client_id>"
    );
  • 如果基于 Shared Key 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "azure.adls2.storage_account" = "<storage_account_name>",
    "azure.adls2.shared_key" = "<shared_key>"
    );
  • 如果基于 Service Principal 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "azure.adls2.oauth2_client_id" = "<service_client_id>",
    "azure.adls2.oauth2_client_secret" = "<service_principal_client_secret>",
    "azure.adls2.oauth2_client_endpoint" = "<service_principal_client_endpoint>"
    );

Google GCS

  • 如果基于 VM 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "gcp.gcs.use_compute_engine_service_account" = "true"
    );
  • 如果基于 Service Account 进行认证和鉴权,可以按如下创建 Hive Catalog:

    CREATE EXTERNAL CATALOG hive_catalog_hms
    PROPERTIES
    (
    "type" = "hive",
    "hive.metastore.type" = "hive",
    "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
    "gcp.gcs.service_account_email" = "<google_service_account_email>",
    "gcp.gcs.service_account_private_key_id" = "<google_service_private_key_id>",
    "gcp.gcs.service_account_private_key" = "<google_service_private_key>"
    );
  • 如果基于 Impersonation 进行认证和鉴权

    • 使用 VM 实例模拟 Service Account,可以按如下创建 Hive Catalog:

      CREATE EXTERNAL CATALOG hive_catalog_hms
      PROPERTIES
      (
      "type" = "hive",
      "hive.metastore.type" = "hive",
      "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
      "gcp.gcs.use_compute_engine_service_account" = "true",
      "gcp.gcs.impersonation_service_account" = "<assumed_google_service_account_email>"
      );
    • 使用一个 Service Account 模拟另一个 Service Account,可以按如下创建 Hive Catalog:

      CREATE EXTERNAL CATALOG hive_catalog_hms
      PROPERTIES
      (
      "type" = "hive",
      "hive.metastore.type" = "hive",
      "hive.metastore.uris" = "thrift://xx.xx.xx.xx:9083",
      "gcp.gcs.service_account_email" = "<google_service_account_email>",
      "gcp.gcs.service_account_private_key_id" = "<meta_google_service_account_email>",
      "gcp.gcs.service_account_private_key" = "<meta_google_service_account_email>",
      "gcp.gcs.impersonation_service_account" = "<data_google_service_account_email>"
      );

查看 Hive Catalog

您可以通过 SHOW CATALOGS 查询当前所在 StarRocks 集群里所有 Catalog:

SHOW CATALOGS;

您也可以通过 SHOW CREATE CATALOG 查询某个 External Catalog 的创建语句。例如,通过如下命令查询 Hive Catalog hive_catalog_glue 的创建语句:

SHOW CREATE CATALOG hive_catalog_glue;

切换 Hive Catalog 和数据库

您可以通过如下方法切换至目标 Hive Catalog 和数据库:

  • 先通过 SET CATALOG 指定当前会话生效的 Hive Catalog,然后再通过 USE 指定数据库:

    -- 切换当前会话生效的 Catalog:
    SET CATALOG <catalog_name>
    -- 指定当前会话生效的数据库:
    USE <db_name>
  • 通过 USE 直接将会话切换到目标 Hive Catalog 下的指定数据库:

    USE <catalog_name>.<db_name>

删除 Hive Catalog

您可以通过 DROP CATALOG 删除某个 External Catalog。

例如,通过如下命令删除 Hive Catalog hive_catalog_glue

DROP Catalog hive_catalog_glue;

查看 Hive 表结构

您可以通过如下方法查看 Hive 表的表结构:

  • 查看表结构

    DESC[RIBE] <catalog_name>.<database_name>.<table_name>
  • 从 CREATE 命令查看表结构和表文件存放位置

    SHOW CREATE TABLE <catalog_name>.<database_name>.<table_name>

查询 Hive 表数据

  1. 通过 SHOW DATABASES 查看指定 Catalog 所属的 Hive 集群中的数据库:

    SHOW DATABASES FROM <catalog_name>
  2. 切换至目标 Hive Catalog 和数据库

  3. 通过 SELECT 查询目标数据库中的目标表:

    SELECT count(*) FROM <table_name> LIMIT 10

导入 Hive 数据

假设有一个 OLAP 表,表名为 olap_tbl。您可以这样来转换该表中的数据,并把数据导入到 StarRocks 中:

INSERT INTO default_catalog.olap_db.olap_tbl SELECT * FROM hive_table

赋予 Hive 表和视图的权限

您可以通过 GRANT 来赋予角色某个 Hive Catalog 内所有表和视图的查询权限。命令语法如下:

GRANT SELECT ON ALL TABLES IN ALL DATABASES TO ROLE <role_name>

例如,通过如下命令创建角色 hive_role_table,切换至 Hive Catalog hive_catalog,然后把 hive_catalog 内所有表和视图的查询权限都赋予 hive_role_table

-- 创建角色 hive_role_table。
CREATE ROLE hive_role_table;

-- 切换到数据目录 hive_catalog。
SET CATALOG hive_catalog;

-- 把 hive_catalog 内所有表和视图的查询权限赋予 hive_role_table。
GRANT SELECT ON ALL TABLES IN ALL DATABASES TO ROLE hive_role_table;

创建 Hive 数据库

同 StarRocks 内部数据目录 (Internal Catalog) 一致,如果您拥有 Hive Catalog 的 CREATE DATABASE 权限,那么您可以使用 CREATE DATABASE 在该 Hive Catalog 内创建数据库。本功能自 3.2 版本起开始支持。

备注

您可以通过 GRANTREVOKE 操作对用户和角色进行权限的赋予和收回。

切换至目标 Hive Catalog,然后通过如下语句创建 Hive 数据库:

CREATE DATABASE <database_name>
[PROPERTIES ("location" = "<prefix>://<path_to_database>/<database_name.db>")]

location 参数用于指定数据库所在的文件路径,支持 HDFS 和对象存储:

  • 选择 HMS 作为元数据服务时,如果您在创建数据库时不指定 location,那么系统会使用 HMS 默认的 <warehouse_location>/<database_name.db> 作为文件路径。
  • 选择 AWS Glue 作为元数据服务时,location 参数没有默认值,因此您在创建数据库时必须指定该参数。

prefix 根据存储系统的不同而不同:

存储系统Prefix 取值
HDFShdfs
Google GCSgs
Azure Blob Storage
  • 如果您的存储账号支持通过 HTTP 协议进行访问,prefixwasb
  • 如果您的存储账号支持通过 HTTPS 协议进行访问,prefixwasbs
Azure Data Lake Storage Gen1adl
Azure Data Lake Storage Gen2
  • 如果您的存储账号支持通过 HTTP 协议进行访问,prefixabfs
  • 如果您的存储账号支持通过 HTTPS 协议进行访问,prefixabfss
阿里云 OSSoss
腾讯云 COScosn
华为云 OBSobs
AWS S3 及其他兼容 S3 的存储(如 MinIO)s3

删除 Hive 数据库

同 StarRocks 内部数据库一致,如果您拥有 Hive 数据库的 DROP 权限,那么您可以使用 DROP DATABASE 来删除该 Hive 数据库。本功能自 3.2 版本起开始支持。仅支持删除空数据库。

备注

您可以通过 GRANTREVOKE 操作对用户和角色进行权限的赋予和收回。

删除数据库操作并不会将 HDFS 或对象存储上的对应文件路径删除。

切换至目标 Hive Catalog,然后通过如下语句删除 Hive 数据库:

DROP DATABASE <database_name>

创建 Hive 表

同 StarRocks 内部数据库一致,如果您拥有 Hive 数据库的 CREATE TABLE 权限,那么您可以使用 CREATE TABLECREATE TABLE AS SELECT (CTAS)、或 [CREATE TABL../../sql-reference/sql-statements/table_bucket_part_index/CREATE_TABLE_LIKE.md_LIKE.md) 在该 Hive 数据库下创建 Managed Table。

本功能自 3.2 版本起开始支持,彼时只支持创建 Parquet 格式的 Hive 表。自 3.3 版本起,该功能还支持创建 ORC 及 Textfile 格式的 Hive 表。

备注
  • 您可以通过 GRANTREVOKE 操作对用户和角色进行权限的赋予和收回。
  • Hive Catalog 自 3.2.4 版本起支持 CREATE TABLE LIKE。

切换至目标 Hive Catalog 和数据库。然后通过如下语法创建 Hive 的 Managed Table:

语法

CREATE TABLE [IF NOT EXISTS] [database.]table_name
(column_definition1[, column_definition2, ...
partition_column_definition1,partition_column_definition2...])
[partition_desc]
[PROPERTIES ("key" = "value", ...)]
[AS SELECT query]
[LIKE [database.]<source_table_name>]

参数说明

column_definition

column_definition 语法定义如下:

col_name col_type [COMMENT 'comment']

参数说明:

参数说明
col_name列名称。
col_type列数据类型。当前支持如下数据类型:TINYINT、SMALLINT、INT、BIGINT、FLOAT、DOUBLE、DECIMAL、DATE、DATETIME、CHAR、VARCHAR[(length)]、ARRAY、MAP、STRUCT。不支持 LARGEINT、HLL、BITMAP 类型。

注意

所有非分区列均以 NULL 为默认值(即,在建表语句中指定 DEFAULT "NULL")。分区列必须在最后声明,且不能为 NULL

partition_desc

partition_desc 语法定义如下:

PARTITION BY (par_col1[, par_col2...])

目前 StarRocks 仅支持 Identity Transforms。 即,会为每个唯一的分区值创建一个分区。

注意

分区列必须在最后声明,支持除 FLOAT、DOUBLE、DECIMAL、DATETIME 以外的数据类型,不支持 NULL 值。而且,partition_desc 中声明的分区列的顺序必须与 column_definition 中定义的列的顺序一致。

PROPERTIES

可以在 PROPERTIES 中通过 "key" = "value" 的形式声明 Hive 表的属性。

以下为常见的几个属性:

属性描述
locationManaged Table 所在的文件路径。使用 HMS 作为元数据服务时,您无需指定 location 参数。使用 AWS Glue 作为元数据服务时:
  • 如果在创建当前数据库时指定了 location 参数,那么在当前数据库下建表时不需要再指定 location 参数,StarRocks 默认把表建在当前数据库所在的文件路径下。
  • 如果在创建当前数据库时没有指定 location 参数,那么在当前数据库建表时必须指定 location 参数。
file_formatManaged Table 的文件格式。当前支持 Parquet、ORC、Textfile 文件格式,其中 ORC 和 Textfile 文件格式自 3.3 版本起支持。取值范围:parquetorctextfile。默认值:parquet
compression_codecManaged Table 的压缩格式。该属性自 3.2.3 版本起弃用,此后写入 Hive 表时的压缩算法统一由会话变量 connector_sink_compression_codec 控制。

示例

以下建表语句以默认的 Parquet 格式为例。

  1. 创建非分区表 unpartition_tbl,包含 idscore 两列,如下所示:

    CREATE TABLE unpartition_tbl
    (
    id int,
    score double
    );
  2. 创建分区表 partition_tbl_1,包含 actioniddt 三列,并定义 iddt 为分区列,如下所示:

    CREATE TABLE partition_tbl_1
    (
    action varchar(20),
    id int,
    dt date
    )
    PARTITION BY (id,dt);
  3. 查询原表 partition_tbl_1 的数据,并根据查询结果创建分区表 partition_tbl_2,定义 iddtpartition_tbl_2 的分区列:

    CREATE TABLE partition_tbl_2
    PARTITION BY (id, dt)
    AS SELECT * from partition_tbl_1;

向 Hive 表中插入数据

同 StarRocks 内表一致,如果您拥有 Hive 表(Managed Table 或 External Table)的 INSERT 权限,那么您可以使用 INSERT 将 StarRocks 表数据写入到该 Hive 表中。

本功能自 3.2 版本起开始支持,彼时只支持写入到 Parquet 格式的 Hive 表。自 3.3 版本起,该功能还支持写入到 ORC 及 Textfile 格式的 Hive 表。

需要注意的是,写数据到 External Table 的功能默认是关闭的,您需要通过系统变量 ENABLE_WRITE_HIVE_EXTERNAL_TABLE 打开。

备注

切换至目标 Hive Catalog 和数据库,然后通过如下语法将 StarRocks 表数据写入到 Parquet 格式的 Hive 表中:

语法

INSERT {INTO | OVERWRITE} <table_name>
[ (column_name [, ...]) ]
{ VALUES ( { expression | DEFAULT } [, ...] ) [, ...] | query }

-- 向指定分区写入数据。
INSERT {INTO | OVERWRITE} <table_name>
PARTITION (par_col1=<value> [, par_col2=<value>...])
{ VALUES ( { expression | DEFAULT } [, ...] ) [, ...] | query }

注意

分区列不允许为 NULL,因此导入时需要保证分区列有值。

参数说明

参数说明
INTO将数据追加写入目标表。
OVERWRITE将数据覆盖写入目标表。
column_name导入的目标列。可以指定一个或多个列。指定多个列时,必须用逗号 (,) 分隔。指定的列必须是目标表中存在的列,并且必须包含分区列。该参数可以与源表中的列名称不同,但顺序需一一对应。如果不指定该参数,则默认导入数据到目标表中的所有列。如果源表中的某个非分区列在目标列不存在,则写入默认值 NULL。如果查询语句的结果列类型与目标列的类型不一致,会进行隐式转化,如果不能进行转化,那么 INSERT INTO 语句会报语法解析错误。
expression表达式,用以为对应列赋值。
DEFAULT为对应列赋予默认值。
query查询语句,查询的结果会导入至目标表中。查询语句支持任意 StarRocks 支持的 SQL 查询语法。
PARTITION导入的目标分区。需要指定目标表的所有分区列,指定的分区列的顺序可以与建表时定义的分区列的顺序不一致。指定分区时,不允许通过列名 (column_name) 指定导入的目标列。

示例

以下写入语句以默认的 Parquet 格式为例。

  1. 向表 partition_tbl_1 中插入如下三行数据:

    INSERT INTO partition_tbl_1
    VALUES
    ("buy", 1, "2023-09-01"),
    ("sell", 2, "2023-09-02"),
    ("buy", 3, "2023-09-03");
  2. 向表 partition_tbl_1 按指定列顺序插入一个包含简单计算的 SELECT 查询的结果数据:

    INSERT INTO partition_tbl_1 (id, action, dt) SELECT 1+1, 'buy', '2023-09-03';
  3. 向表 partition_tbl_1 中插入一个从其自身读取数据的 SELECT 查询的结果数据:

    INSERT INTO partition_tbl_1 SELECT 'buy', 1, date_add(dt, INTERVAL 2 DAY)
    FROM partition_tbl_1
    WHERE id=1;
  4. 向表 partition_tbl_2dt='2023-09-01'id=1 的分区插入一个 SELECT 查询的结果数据:

    INSERT INTO partition_tbl_2 SELECT 'order', 1, '2023-09-01';

    Or

    INSERT INTO partition_tbl_2 partition(dt='2023-09-01',id=1) SELECT 'order';
  5. 将表 partition_tbl_1dt='2023-09-01'id=1 的分区下所有 action 列值全部覆盖为 close

    INSERT OVERWRITE partition_tbl_1 SELECT 'close', 1, '2023-09-01';

    Or

    INSERT OVERWRITE partition_tbl_1 partition(dt='2023-09-01',id=1) SELECT 'close';

删除 Hive 表

同 StarRocks 内表一致,如果您拥有 Hive 表的 DROP 权限,那么您可以使用 DROP TABLE 来删除该 Hive 表。本功能自 3.2 版本起开始支持。注意当前只支持删除 Hive 的 Managed Table。

备注

您可以通过 GRANTREVOKE 操作对用户和角色进行权限的赋予和收回。

执行删除表的操作时,您必须在 DROP TABLE 语句中指定 FORCE 关键字。该操作不会删除表对应的文件路径,但是会删除 HDFS 或对象存储上的表数据。请您谨慎执行该操作。

切换至目标 Hive Catalog 和数据库,然后通过如下语句删除 Hive 表:

DROP TABLE <table_name> FORCE

手动或自动更新元数据缓存

手动更新

默认情况下,StarRocks 会缓存 Hive 的元数据、并以异步模式自动更新缓存的元数据,从而提高查询性能。此外,在对 Hive 表做了表结构变更或其他表更新后,您也可以使用 REFRESH EXTERNAL TABLE 手动更新该表的元数据,从而确保 StarRocks 第一时间生成合理的查询计划:

REFRESH EXTERNAL TABLE <table_name> [PARTITION ('partition_name', ...)]

以下情况适用于执行手动更新元数据:

  • 已有分区内的数据文件发生变更,如执行过 INSERT OVERWRITE ... PARTITION ... 命令。

  • Hive 表有 Schema 变更。

  • Hive 表被 DROP 后重建一个同名 Hive 表。

  • 创建 Hive Catalog 时在 PROPERTIES 中指定了 "enable_cache_list_names" = "true"。在 Hive 侧新增分区后,需要查询新增分区。

    备注

    自 2.5.5 版本起,StarRocks 支持周期性刷新 Hive 元数据缓存。参见本文下面”周期性刷新元数据缓存“小节。开启 Hive 元数据缓存周期性刷新功能以后,默认情况下 StarRocks 每 10 分钟刷新一次 Hive 元数据缓存。因此,一般情况下,无需执行手动更新。您只有在新增分区后,需要立即查询新增分区的数据时,才需要执行手动更新。

注意 REFRESH EXTERNAL TABLE 只会更新 FE 中已缓存的表和分区。

周期性刷新元数据缓存

自 2.5.5 版本起,StarRocks 可以周期性刷新经常访问的 Hive 外部数据目录的元数据缓存,达到感知数据更新的效果。您可以通过以下 FE 参数配置 Hive 元数据缓存周期性刷新:

配置名称默认值说明
enable_background_refresh_connector_metadatav3.0 为 true,v2.5 为 false是否开启 Hive 元数据缓存周期性刷新。开启后,StarRocks 会轮询 Hive 集群的元数据服务(HMS 或 AWS Glue),并刷新经常访问的 Hive 外部数据目录的元数据缓存,以感知数据更新。true 代表开启,false 代表关闭。FE 动态参数,可以通过 ADMIN SET FRONTEND CONFIG 命令设置。
background_refresh_metadata_interval_millis600000(10 分钟)接连两次 Hive 元数据缓存刷新之间的间隔。单位:毫秒。FE 动态参数,可以通过 ADMIN SET FRONTEND CONFIG 命令设置。
background_refresh_metadata_time_secs_since_last_access_secs86400(24 小时)Hive 元数据缓存刷新任务过期时间。对于已被访问过的 Hive Catalog,如果超过该时间没有被访问,则停止刷新其元数据缓存。对于未被访问过的 Hive Catalog,StarRocks 不会刷新其元数据缓存。单位:秒。FE 动态参数,可以通过 ADMIN SET FRONTEND CONFIG 命令设置。

元数据缓存周期性刷新与元数据自动异步更新策略配合使用,可以进一步加快数据访问速度,降低从外部数据源读取数据的压力,提升查询性能。

附录:理解元数据自动异步更新策略

自动异步更新策略是 StarRocks 用于更新 Hive Catalog 中元数据的默认策略。

默认情况下(即当 enable_metastore_cache 参数和 enable_remote_file_cache 参数均设置为 true 时),如果一个查询命中 Hive 表的某个分区,则 StarRocks 会自动缓存该分区的元数据、以及该分区下数据文件的元数据。缓存的元数据采用懒更新 (Lazy Update) 策略。

例如,有一张名为 table2 的 Hive 表,该表的数据分布在四个分区:p1p2p3p4。当一个查询命中 p1 时,StarRocks 会自动缓存 p1 的元数据、以及 p1 下数据文件的元数据。假设当前缓存元数据的更新和淘汰策略设置如下:

  • 异步更新 p1 的缓存元数据的时间间隔(通过 metastore_cache_refresh_interval_sec 参数指定)为 2 小时。
  • 异步更新 p1 下数据文件的缓存元数据的时间间隔(通过 remote_file_cache_refresh_interval_sec 参数指定)为 60 秒。
  • 自动淘汰 p1 的缓存元数据的时间间隔(通过 metastore_cache_ttl_sec 参数指定)为 24 小时。
  • 自动淘汰 p1 下数据文件的缓存元数据的时间间隔(通过 remote_file_cache_ttl_sec 参数指定)为 36 小时。

如下图所示。

Update policy on timeline

StarRocks 采用如下策略更新和淘汰缓存的元数据:

  • 如果另有查询再次命中 p1,并且当前时间距离上次更新的时间间隔不超过 60 秒,则 StarRocks 既不会更新 p1 的缓存元数据,也不会更新 p1 下数据文件的缓存元数据。
  • 如果另有查询再次命中 p1,并且当前时间距离上次更新的时间间隔超过 60 秒,则 StarRocks 会更新 p1 下数据文件的缓存元数据。
  • 如果另有查询再次命中 p1,并且当前时间距离上次更新的时间间隔超过 2 小时,则 StarRocks 会更新 p1 的缓存元数据。
  • 如果继上次更新结束后,p1 在 24 小时内未被访问,则 StarRocks 会淘汰 p1 的缓存元数据。后续有查询再次命中 p1 时,会重新缓存 p1 的元数据。
  • 如果继上次更新结束后,p1 在 36 小时内未被访问,则 StarRocks 会淘汰 p1 下数据文件的缓存元数据。后续有查询再次命中 p1 时,会重新缓存 p1 下数据文件的元数据。